CT Imaging

CT and µCT imaging have allowed us to visualize details of swim bladder and otolith morphology in butterflyfishes and squirrelfishes (Webb, et al., 2006, 2010), and the morphology of the cranial lateral line canals in cichlid fishes (e.g., Webb, et al., 2014) and other species with interesting lateral line canal phenotypes (Webb, 2014).  Ongoing projects involve the quantification of CT data that will be used for modeling lateral line function.

Figure3_CT_NEW

An example of µCT imaging of the skull, including the lateral line canals, in cichlid fishes (top: Labeotropheus fuelleborni and Metriaclima zebra, bottom: Aulonocara baenschi). (in Webb et al. 2014, Journal of Morphology).

Figure4FINALSmall

CT Imaging of the volume of air within swim bladders (low density, white) and otoliths (high density, red) in squirrelfishes (A, B) and butterflyfishes (C, D, E) (From Webb et al., 2010, J. Fish Biology)

We have CT or µCT data for:

  • Chaetodon (several spp. of butterflyfishes) – caudal half of skull, swim bladder, vertebral column (CT)
  • Forcipiger flavissimus (long nose butterflyfish) – caudal half of skull and swim bladder, vertebral column (CT)
  • Sargocentron punctatissimum (soldier fish)- caudal half of skull and swim bladder, vertebral column (CT)
  • Myripristis kuntee (squirrelfish) – caudal half of skull and swim bladder, vertebral column (CT)
  • Notropis buccatus (silver jaw minnow) – whole head, anterior vertebral column (µCT)
  • Apollonia melanostomus (round goby) – whole head, anterior vertebral column (µCT)
  • Gymnocephalus cernuus (Eurasian Ruffe) – whole head, anterior vertebral column (µCT)
  • Several Lake Malawi cichlids:
    • Labeotropheus fuelleborni – whole head, anterior vertebral column (µCT)
    • Metriaclima zebra – whole head, anterior vertebral column (µCT)
    • Tramitichromis sp. – whole head, anterior vertebral column (µCT)
    • Aulonocara baenschi  – whole head, anterior vertebral column (µCT)
    • Aulonocara stuartgranti – whole head, anterior vertebral column (µCT)

CT imaging and post-processing was carried out at the Woods Hole Oceanographic Institution (with Dr. Darlene Ketten; http://csi.whoi.edu; See JPG’s at: http://csi.whoi.edu/fish-gallery).

µCT imaging was carried out either at the Orthopedics Research Lab (Rhode Island Hospital, with Douglas Moore) or at the Museum of Comparative Zoology (Harvard University, with Dr. Christopher Kenaley).

All data was post-processed, and 2-D and 3-D images and videos were generated using OsiriX (64-bit; http://www.osirix-viewer.com). A Guide_to_OsiriX (2010) was written by undergraduate Timothy Alberg.

Public Access:  Digital data (DICOM) and new/original 2-D or 3-D images derived from digital data (processed in OsiriX) are available to other researchers (upon request, via email) for use in grant proposals and in publications, with the expectation of appropriate acknowledgment.

Publications With CT and µCT Imaging:

  1. Webb, JF, Smith, W.L., Ketten, D.R. 2006. The laterophysic connection and swim bladder in butterflyfishes in the genus Chaetodon (Perciformes: Chaetodontidae). J. Morphology. 267:1338–1355.
  2. Webb JF, Montgomery JC, Mogdans J. 2008. Bioacoustics and the lateral line system of fishes. pp. 145-182. In: Fish Bioacoustics (eds. Webb JF, Fay RR, Popper AN) Springer-Verlag, NY.
  3. Webb, JF, Herman, JL, Woods, CF, and Ketten, DR.  2010. The ears of butterflyfishes: “Hearing generalists” on noisy coral reefs?  J. Fish Biol. 77: 1434-1451.
  4. Webb, JF. 2014. Morphological diversity, evolution and development of the mechanosensory lateral line system.  In: (Coombs S, and Bleckmann, H. eds) The Lateral Ljmor20285ine System. [Springer Handbook of Auditory Research] NY: Springer-Verlag. pp. 17-72.
  5. Webb, JF. 2014. Lateral line morphology and development and implications for the functional ontogeny of flow sensing of fishes. In: Bleckmann H, Mogdans J, Coombs, S. (eds.). Flow Sensing in Air and Water – Behavioural, Neural and Engineering Principles of Operation. pp. 247-270.
  6. Webb, JF, Bird, NC, Carter, L, Dickson, J. 2014. Comparative development and evolution of two lateral line phenotypes in Lake Malawi cichlids.  Journal of Morphology. 275: 678-692.   DOI: 10.1002/jmor.20247.
  7. Bird, NC and Webb, JF. 2014. Heterochrony, modularity, and the functional evolution of the lateral line system. EvoDevo2014, 5:21. DOI: 10.1186/2041-9139-5-21. Full text.
  8. Tricas, TC and Webb, JF. 2016. Acoustic communication in butterflyfishes: Anatomical novelties, physiology, and behavior, pp. 57-92. In: Sisneros, J. (ed.). Fish Hearing and Bioacoustics: An anthology in honor of Arthur N. Popper and Richard R. Fay. Advances in Experimental Medicine and Biology, Vol. 877. NY: Springer Verlag. 
  9. Schwalbe, MAB and Webb, JF. 2015. Effect of light intensity on prey detection behavior in two Lake Malawi cichlids, Aulonocara stuartgranti and TramitichromisJournal of Comparative Physiology A.  201: 341-356. DOI 10.1007/s00359-015-0982-y
  10. Becker, EA, Bird, NC, and Webb, JF.  Post-embryonic development of neuromasts and lateral line canals and the evolution of cranial lateral line phenotype in Lake Malawi cichlid fishes. In prep. for  J. Morphology.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s